Characterizing graphs with convex and connected configuration spaces
نویسندگان
چکیده
We define and study exact, efficient representations of realization spaces Euclidean Distance Constraint Systems (EDCS). These are graphs with distance assignments on the edges (frameworks) or graphs with distance interval assignments on the edges. Each representation corresponds to a choice of non-edges or Cayley parameters. The set of realizable distance assignments to the chosen parameters yields a parametrized configuration space. Our notion of efficiency is based on the convexity and connectedness of the configuration space, as well as algebraic complexity of sampling realizations, i.e., sampling the configuration space and obtaining a realization from the sample (parametrized) configuration. Significantly, we give purely graph-theoretic, forbidden minor characterizations that capture (i) the class of graphs that always admit efficient configuration spaces and (ii) the possible choices of representation parameters that yield efficient configuration spaces for a given graph. Our results automatically yield efficient algorithms for obtaining exact descriptions of the configuration spaces and for sampling realizations, without missing extreme or boundary realizations. In addition, our results are tight: we show counterexamples to obvious extensions. This is the first step in a systematic and graded program of combinatorial characterizations of efficient configuration spaces. We discuss several future theoretical and applied research directions. In particular, the results presented here are the first to completely characterize EDCS that have connected, convex and efficient configuration spaces, based on precise and formal measures of efficiency. It should be noted that our results do not rely on genericity of the EDCS. Some of our proofs employ an unusual interplay of (a) classical analytic and algebraic results related to positive semi-definiteness of Euclidean distance matrices, and Cayley-Menger conditions, with (b) recent forbidden minor characterizations and algorithms related to realizability of EDCS. We further introduce a novel type of restricted edge contraction or reduction to a graph minor, a “trick” that we anticipate will be useful in other situations.
منابع مشابه
Topological number for locally convex topological spaces with continuous semi-norms
In this paper we introduce the concept of topological number for locally convex topological spaces and prove some of its properties. It gives some criterions to study locally convex topological spaces in a discrete approach.
متن کاملFuzzy convergence structures in the framework of L-convex spaces
In this paper, fuzzy convergence theory in the framework of $L$-convex spaces is introduced. Firstly, the concept of $L$-convex remote-neighborhood spaces is introduced and it is shown that the resulting category is isomorphic to that of $L$-convex spaces. Secondly, by means of $L$-convex ideals, the notion of $L$-convergence spaces is introduced and it is proved that the category of $L$-con...
متن کاملCategory and subcategories of (L,M)-fuzzy convex spaces
Inthispaper, (L,M)-fuzzy domain finiteness and (L,M)-fuzzy restricted hull spaces are introduced, and several characterizations of the category (L,M)-CS of (L,M)-fuzzy convex spaces are obtained. Then, (L,M)-fuzzy stratified (resp. weakly induced, induced) convex spaces are introduced. It is proved that both categories, the category (L,M)-SCS of (L,M)-fuzzy stratified convex spaces and the cate...
متن کاملExistence and uniqueness of the solution for a general system of operator equations in $b-$metric spaces endowed with a graph
The purpose of this paper is to present some coupled fixed point results on a metric space endowed with two $b$-metrics. We shall apply a fixed point theorem for an appropriate operator on the Cartesian product of the given spaces endowed with directed graphs. Data dependence, well-posedness and Ulam-Hyers stability are also studied. The results obtained here will be applied to prove the existe...
متن کاملBASE AXIOMS AND SUBBASE AXIOMS IN M-FUZZIFYING CONVEX SPACES
Based on a completely distributive lattice $M$, base axioms and subbase axioms are introduced in $M$-fuzzifying convex spaces. It is shown that a mapping $mathscr{B}$ (resp. $varphi$) with the base axioms (resp. subbase axioms) can induce a unique $M$-fuzzifying convex structure with $mathscr{B}$ (resp. $varphi$) as its base (resp. subbase). As applications, it is proved that bases and subbase...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/0809.3935 شماره
صفحات -
تاریخ انتشار 2008